Where x_n is the nth Fibonacci number, prove that $ \forall n \in \mathbb{N}, x_n = \frac {1}{\sqrt{5}} \left[\left(\frac {1 + \sqrt {5}}{2}\right)^n - \left(\frac {1 - \sqrt {5}}{2}\right)^n\right] $.
To prove the closed‐form (“Binet’s”) formula
$$ x_n \;=\;\frac1{\sqrt5}\Bigl(\phi^n - \psi^n\Bigr), \quad\text{where}\quad \phi = \frac{1 + \sqrt5}2,\quad \psi = \frac{1 - \sqrt5}2, $$
we’ll show that the right‐hand side satisfies
- the same recurrence as the Fibonacci numbers,
- the same initial conditions,
and then invoke uniqueness of solutions to a linear recurrence.
1. Setup: characteristic equation
The Fibonacci numbers are defined by
$$ x_0 = 0,\quad x_1 = 1,\quad x_n = x_{n-1} + x_{n-2}\quad(\forall n\ge2). $$
The associated characteristic polynomial is
$$ r^2 - r - 1 = 0, $$
whose two roots are
$$ \phi = \tfrac{1+\sqrt5}2, \qquad \psi = \tfrac{1-\sqrt5}2. $$
Since this is a distinct‐root second‐order homogeneous recurrence, its general solution is
$$ a_n \;=\; A\,\phi^n + B\,\psi^n $$
for constants $A,B$ determined by $a_0$ and $a_1$.
2. Determine $A$ and $B$ via initial conditions
We want $a_n = x_n$, so impose
- $a_0 = A + B = x_0 = 0$,
- $a_1 = A\,\phi + B\,\psi = x_1 = 1$.
From $A+B=0$ we get $B=-A$. Plugging into the second,
$$ A\,\phi - A\,\psi \;=\; 1 \quad\Longrightarrow\quad A(\phi - \psi) = 1. $$
But $\phi - \psi = \sqrt5$, so $A = 1/\sqrt5$ and hence $B = -1/\sqrt5$. Therefore
$$ a_n \;=\;\frac1{\sqrt5}\,\phi^n \;-\;\frac1{\sqrt5}\,\psi^n \;=\;\frac1{\sqrt5}\bigl(\phi^n - \psi^n\bigr). $$
3. Check that $a_n$ satisfies the Fibonacci recurrence
Since $\phi$ and $\psi$ are roots of $r^2 = r+1$, we have
$$ \phi^n = \phi^{n-1} + \phi^{n-2}, \quad \psi^n = \psi^{n-1} + \psi^{n-2}. $$
Hence
$$ a_n =\frac{\phi^n - \psi^n}{\sqrt5} =\frac{(\phi^{n-1}+\phi^{n-2}) - (\psi^{n-1}+\psi^{n-2})}{\sqrt5} =\frac{\phi^{n-1}-\psi^{n-1}}{\sqrt5} \;+\;\frac{\phi^{n-2}-\psi^{n-2}}{\sqrt5} =a_{n-1} + a_{n-2}. $$
Thus $a_n$ obeys the same recurrence as $x_n$.
4. Conclusion by uniqueness
We have produced a sequence $a_n=(\phi^n-\psi^n)/\sqrt5$ which
- satisfies the same recurrence $a_n = a_{n-1}+a_{n-2}$,
- has the same initial values $a_0=0$, $a_1=1$.
By the standard uniqueness theorem for linear recurrences, it follows that
$$ a_n = x_n \quad\forall n\in\Bbb N. $$
That is,
$$ \boxed{ x_n =\frac1{\sqrt5}\Bigl(\phi^n - \psi^n\Bigr) =\frac1{\sqrt5}\Bigl(\bigl(\tfrac{1+\sqrt5}2\bigr)^n -\bigl(\tfrac{1-\sqrt5}2\bigr)^n\Bigr). } $$
This completes the proof. ∎
No comments:
Post a Comment