Suppose we want to solve many congruences such as:
2x ≡ 7 (mod 11)
7x ≡ 4 (mod 11)
x^5 ≡ 3 (mod 4)
And we already have a calculator that solves equations about real numbers very well. How do we convert such congruences into equations?
To solve congruences like:
- $2x \equiv 7 \pmod{11}$
- $7x \equiv 4 \pmod{11}$
- $x^5 \equiv 3 \pmod{4}$
using a calculator that works with real numbers, you need to translate modular arithmetic into standard equations. Here's how you can do it:
✅ General Strategy: Use the definition of congruence
Recall:
$$ a \equiv b \pmod{n} \quad \text{means} \quad a = b + kn \quad \text{for some integer } k. $$
We can turn a modular congruence into an ordinary equation involving an unknown integer $k$.
🔁 Step-by-step conversion
Example 1: $2x \equiv 7 \pmod{11}$
We rewrite this as:
$$ 2x = 7 + 11k \quad \text{for some integer } k. $$
Now solve for $x$ in terms of $k$:
$$ x = \frac{7 + 11k}{2} $$
Now you can try integer values of $k$ and check when $x$ becomes an integer.
For example:
- $k = 1$: $x = \frac{7 + 11}{2} = \frac{18}{2} = 9 \Rightarrow \boxed{x = 9}$
- You can verify: $2 \cdot 9 = 18 \equiv 7 \pmod{11}$
✅ So the solution is $x \equiv 9 \pmod{11}$
Example 2: $7x \equiv 4 \pmod{11}$
Write:
$$ 7x = 4 + 11k \Rightarrow x = \frac{4 + 11k}{7} $$
Try values of $k$ and look for integer $x$:
- $k = 3$: $x = \frac{4 + 33}{7} = \frac{37}{7} \notin \mathbb{Z}$
- $k = 2$: $x = \frac{4 + 22}{7} = \frac{26}{7}$
- $k = 1$: $x = \frac{4 + 11}{7} = \frac{15}{7}$
- $k = 5$: $x = \frac{4 + 55}{7} = \frac{59}{7}$
- $k = 6$: $x = \frac{4 + 66}{7} = \frac{70}{7} = 10 \Rightarrow \boxed{x = 10}$
Verify: $7 \cdot 10 = 70 \equiv 4 \pmod{11}$
✅ So the solution is $x \equiv 10 \pmod{11}$
Example 3: $x^5 \equiv 3 \pmod{4}$
Write:
$$ x^5 = 3 + 4k \Rightarrow x = \sqrt[5]{3 + 4k} $$
Try small integer values of $k$ and check if the 5th root is an integer:
- $k = 0$: $x^5 = 3 \Rightarrow x = \sqrt[5]{3}$ ❌
- $k = 1$: $x^5 = 7 \Rightarrow x = \sqrt[5]{7}$ ❌
- $k = 2$: $x^5 = 11$ ❌
- $k = 3$: $x^5 = 15$ ❌
- $k = 4$: $x^5 = 19$
- $k = 5$: $x^5 = 23$
- $k = 6$: $x^5 = 27 \Rightarrow x = 3 \Rightarrow \boxed{x = 3}$
Verify: $3^5 = 243 \equiv 3 \pmod{4}$
✅ So $x \equiv 3 \pmod{4}$
🧠 Summary
To convert congruences into real equations (for calculators):
- Rewrite the congruence $a \equiv b \pmod{n}$ as $a = b + kn$ where $k \in \mathbb{Z}$.
- Solve the resulting real-number equation for $x$.
- Try small integer values of $k$ to find valid (integer) solutions for $x$.
Let me know if you want a method that avoids brute-force trial for $k$.
Is there one?
Yes — instead of trial and error, there's a systematic method based on modular inverses, which avoids guessing values of $k$. Here's how it works:
🔄 Method: Use Modular Inverses (no guessing)
Idea:
To solve a linear congruence like:
$$ ax \equiv b \pmod{n} $$
You can multiply both sides by the modular inverse of $a \mod n$ — provided the inverse exists (i.e., $\gcd(a, n) = 1$).
🔁 Step-by-step
Step 1: Find the modular inverse of $a \mod n$
Let $a^{-1}$ be the modular inverse of $a \mod n$, meaning:
$$ a \cdot a^{-1} \equiv 1 \pmod{n} $$
Step 2: Multiply both sides by $a^{-1}$
$$ a^{-1} \cdot ax \equiv a^{-1} \cdot b \pmod{n} \Rightarrow x \equiv a^{-1} b \pmod{n} $$
✅ Examples
Example 1: $2x \equiv 7 \pmod{11}$
- Find $2^{-1} \mod 11$
We need $2y \equiv 1 \pmod{11}$. Try small values:
- $y = 6 \Rightarrow 2 \cdot 6 = 12 \equiv 1 \pmod{11}$
So $2^{-1} = 6 \mod{11}$
Then:
$$ x \equiv 6 \cdot 7 = 42 \equiv \boxed{9 \pmod{11}} $$
No trial and error needed!
Example 2: $7x \equiv 4 \pmod{11}$
- Find $7^{-1} \mod 11$
Try:
- $7 \cdot 8 = 56 \equiv 1 \pmod{11}$
So $7^{-1} = 8 \mod 11$
Then:
$$ x \equiv 8 \cdot 4 = 32 \equiv \boxed{10 \pmod{11}} $$
⚠️ Note on Higher Powers
This method is mainly for linear congruences (like $ax \equiv b \mod n$).
For nonlinear ones like:
- $x^5 \equiv 3 \mod 4$
you generally:
- Try all values of $x \mod 4$, since there are only 4: $0, 1, 2, 3$
- Compute $x^5 \mod 4$ for each
Example:
- $x = 0 \Rightarrow 0^5 = 0 \mod 4$
- $x = 1 \Rightarrow 1^5 = 1$
- $x = 2 \Rightarrow 32 \equiv 0 \mod 4$
- $x = 3 \Rightarrow 243 \equiv 3 \mod 4$
✅ So $x \equiv 3 \pmod{4}$ is the solution
💡 Summary
Type | Method |
---|---|
Linear congruence $ax \equiv b \mod n$ | Multiply both sides by $a^{-1} \mod n$ |
Power congruence $x^k \equiv b \mod n$ | Try all $x \in \{0, 1, ..., n-1\}$ or use discrete logs (advanced) |
Let me know if you want help finding modular inverses programmatically or using the Extended Euclidean Algorithm.
No comments:
Post a Comment