Show that $\forall n \in \mathbb{N}_{>1}, \forall r \in \mathbb{R} \setminus \{1\}, 1 + r + r^2 + \cdots + r^{n-1} = \frac {r^n - 1}{r-1}$.
We are asked to prove the formula for the finite geometric series:
$$ \forall n \in \mathbb{N}_{>1}, \forall r \in \mathbb{R} \setminus \{1\}, \quad 1 + r + r^2 + \cdots + r^{n-1} = \frac{r^n - 1}{r - 1} $$
Let’s define the left-hand side:
Let:
$$ S = 1 + r + r^2 + \cdots + r^{n-1} $$
This is a geometric series with:
- First term $a = 1$
- Common ratio $r$
- Number of terms $n$
We want to derive a closed-form expression for $S$.
Step 1: Multiply both sides by $r$
$$ rS = r + r^2 + r^3 + \cdots + r^n $$
Step 2: Subtract the two equations
Subtract the original series $S$ from $rS$:
$$ rS - S = (r + r^2 + \cdots + r^n) - (1 + r + r^2 + \cdots + r^{n-1}) $$
Almost all terms cancel out:
$$ rS - S = r^n - 1 $$
Step 3: Factor out $S$
$$ S(r - 1) = r^n - 1 $$
Step 4: Solve for $S$
Since $r \ne 1$, we can divide both sides:
$$ S = \frac{r^n - 1}{r - 1} $$
Conclusion
Thus, we have shown that:
$$ \boxed{1 + r + r^2 + \cdots + r^{n-1} = \frac{r^n - 1}{r - 1}} \quad \text{for all } n \in \mathbb{N}_{>1}, \; r \in \mathbb{R} \setminus \{1\} $$
✔️ Proven.
No comments:
Post a Comment