Wednesday, May 28, 2025

Sum of products of consecutive naturals, and sum of the reciprocals of such products

Prove, using induction, that for every natural number n: $$\displaystyle \begin{aligned} 1\cdot 2+2\cdot 3+3\cdot 4+\cdots +n\cdot (n+1)=\dfrac{n(n+1)(n+2)}{3} \end{aligned}$$

Let's prove the statement by mathematical induction.


Statement:

For every natural number $n \geq 1$:

$$ 1\cdot 2 + 2\cdot 3 + 3\cdot 4 + \cdots + n\cdot (n+1) = \frac{n(n+1)(n+2)}{3} $$


Step 1: Base Case

Test for $n = 1$.

Left-hand side (LHS):

$$ 1\cdot 2 = 2 $$

Right-hand side (RHS):

$$ \frac{1(1+1)(1+2)}{3} = \frac{1\cdot 2\cdot 3}{3} = \frac{6}{3} = 2 $$

✅ The base case holds.


Step 2: Inductive Hypothesis

Assume the formula holds for $n = k$, i.e.,

$$ 1\cdot 2 + 2\cdot 3 + \cdots + k\cdot (k+1) = \frac{k(k+1)(k+2)}{3} $$


Step 3: Inductive Step

Show it holds for $n = k + 1$.

Left-hand side for $n = k + 1$:

$$ \left(1\cdot 2 + 2\cdot 3 + \cdots + k\cdot (k+1)\right) + (k+1)(k+2) $$

Using the inductive hypothesis:

$$ \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) $$

Factor out $(k+1)(k+2)$:

$$ (k+1)(k+2)\left( \frac{k}{3} + 1 \right) $$

Combine the terms inside the parentheses:

$$ (k+1)(k+2) \cdot \frac{k+3}{3} $$

Rearrange:

$$ \frac{(k+1)(k+2)(k+3)}{3} $$

This matches the RHS for $n = k+1$.


Conclusion:

By mathematical induction, the formula holds for all natural numbers $n \geq 1$:

$$ 1\cdot 2 + 2\cdot 3 + \cdots + n\cdot (n+1) = \frac{n(n+1)(n+2)}{3} $$

Prove, using induction, that for every natural number n: $$\displaystyle \begin{aligned} \dfrac{1}{1\cdot 2}+\dfrac{1}{2\cdot 3}+\cdots +\dfrac{1}{n\cdot (n+1)}=\dfrac{n}{n+1} \end{aligned}$$

Let's prove this formula using mathematical induction.


Statement:

For every natural number $n \geq 1$:

$$ \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1} $$


Step 1: Base Case

Test for $n = 1$.

Left-hand side (LHS):

$$ \frac{1}{1\cdot 2} = \frac{1}{2} $$

Right-hand side (RHS):

$$ \frac{1}{1+1} = \frac{1}{2} $$

✅ The base case holds.


Step 2: Inductive Hypothesis

Assume the formula holds for $n = k$, i.e.,

$$ \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{k\cdot (k+1)} = \frac{k}{k+1} $$


Step 3: Inductive Step

Show it holds for $n = k + 1$.

Left-hand side for $n = k + 1$:

$$ \left(\frac{1}{1\cdot 2} + \cdots + \frac{1}{k\cdot (k+1)}\right) + \frac{1}{(k+1)(k+2)} $$

Apply the inductive hypothesis:

$$ \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} $$

Get a common denominator:

$$ \frac{k(k+2) + 1}{(k+1)(k+2)} $$

Compute the numerator:

$$ k(k+2) + 1 = k^2 + 2k + 1 = (k+1)^2 $$

So the sum becomes:

$$ \frac{(k+1)^2}{(k+1)(k+2)} $$

Cancel one $(k+1)$ from numerator and denominator:

$$ \frac{k+1}{k+2} $$

This matches the RHS for $n = k + 1$:

$$ \frac{k+1}{(k+1)+1} = \frac{k+1}{k+2} $$


Conclusion:

By mathematical induction, the formula holds for all natural numbers $n \geq 1$:

$$ \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1} $$

No comments:

Post a Comment